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ABSTRACT
Background and Objective: Iriscope, a 1.3 mm video endoscopic probe introduced through an r- EBUS catheter, allows for the 
direct visualisation of small peripheral pulmonary nodules (PPNs). This study assessed the ability of physicians with different 
levels of experience in bronchoscopy, and the ability of artificial intelligence (AI) to predict the malignant nature of small PPNs 
during Iriscope peripheral endoscopy.
Methods: Patients undergoing bronchoscopy with r- EBUS and Iriscope for peripheral PPNs < 20 mm with a definite diagnosis 
were analysed. Senior and Junior physicians independently interpreted video- recorded Iriscope sequences, classifying them as 
tumoral (malignant) or non- tumoral, blind to the final diagnosis. A deep learning (DL) model was also trained on Iriscope images 
and tested on a different set of patients for comparison with human interpretation. Diagnostic accuracy, sensitivity, specificity, 
and F1 score were calculated.
Results: Sixty- one patients with small PPNs (median size 15 mm, IQR: 11–20 mm) were included. The technique allowed for the 
direct visualisation of the lesions in all cases. The final diagnosis was cancer for 37 cases and a benign lesion in 24 cases.
Senior physicians outperformed junior physicians in recognising tumoral Iriscope images, with a balanced accuracy of 85.4% 
versus 66.7%, respectively, when compared with the final diagnosis. The DL model outperformed junior physicians with a bal-
anced accuracy of 71.5% but was not superior to senior physicians.
Conclusion: Iriscope could be a valuable tool in PPNs management, especially for experienced operators. Applied to Iriscope 
images, DL could enhance overall performance of less experienced physicians in diagnosing malignancy.

1   |   Introduction

Peripheral pulmonary nodules (PPNs) have become increasingly 
accessible for bronchoscopic sampling, due to advancements 

in peripheral bronchoscopy techniques [1] such as radial en-
dobronchial ultrasound (r- EBUS), electromagnetic or non- 
electromagnetic navigation bronchoscopy, and robotic- assisted 
bronchoscopy. However, diagnosing PPNs endoscopically 
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remains challenging [2, 3], particularly for small PPNs, that is, 
those less than 20 mm in diameter [4, 5].

A critical step in peripheral bronchoscopy is optimising the 
sampling phase. Even after identifying and accessing the distal 
bronchus leading to the target during CT planning and naviga-
tion [6], it is essential to confirm the correct location of the sam-
pling device [7].

While current verification tools such as r- EBUS, fluoroscopy, 
cone- beam CT, and digital tomosynthesis help reduce body- to- 
scan divergence [8–10], none of these techniques provide direct 
endoscopic visualisation of the peripheral lung lesion before 
sampling.

In a previous study [11], we used a miniaturised 1.3 mm video 
endoscopic probe (Iriscope, Lys Medical, Charleroi, Belgium) 
with r- EBUS for direct visualisation of PPNs, including small 
subpleural lesions, to ensure precise localisation of the biopsy 
forceps. This approach achieved an 87% diagnostic rate and vi-
sually differentiated benign from cancerous peripheral nodules 
with a 93% positive predictive value. However, a limitation was 
that expert endoscopists performed the image interpretation, 
raising concerns about whether less experienced bronchosco-
pists could similarly recognise tumoral features [12–15].

Artificial Intelligence (AI) has shown promise in improving 
lung nodule management [16], although challenges remain 
[17, 18]. Its role in the direct visualisation of small PPNs, how-
ever, is still unexplored.

This study aimed to assess the Iriscope's role in the endoscopic 
diagnosis of small PPNs, particularly in predicting malignancy. 
We evaluated whether its performance depends on physician ex-
perience and if integrating AI to the procedure could enhance 
diagnostic accuracy for both experienced and less experienced 
bronchoscopists.

2   |   Materials and Methods

2.1   |   Study Population

This single- centre study was conducted at Rouen University 
Hospital between November 2023 and September 2024. All con-
secutive patients with PPLs < 20 mm who underwent bronchos-
copy with r- EBUS + Iriscope and had a definite diagnosis were 
analysed.

Clinical data, thoracic imaging, and pathology results were 
retrospectively reviewed. CT scans from the hospital's Picture 
Archiving Communication System included details on lesion 
type (ground glass, solid, sub- solid), size, bronchus sign, and 
distance to the pleura.

The study protocol was approved by the Institutional review 
Board of Rouen University Hospital (E2024- 72). Research fol-
lowed the European Directive 2014/536/EU and the French law 
2012–300 on biomedical research. Consent was not required for 
retrospective data analysis under French law.

2.2   |   Bronchoscopy Procedure

The endoscopic route to the lesion was planned using virtual 
bronchoscopy navigation software (LungPoint planner, Broncus 
Medical Inc., San Jose, California, USA). Bronchoscopy was per-
formed under local or general anaesthesia using a bronchoscope 
with a 4.2 mm outer diameter and a 2 mm working channel (BF- 
P190, Olympus, Tokyo, Japan). Once the distal bronchus leading 
to the lesion was reached, the r- EBUS probe (1.4 mm UM- S20- 
17S probe, Olympus Tokyo, Japan) was introduced via the guide 
sheath (1.9 mm guide sheath, K401, Olympus Tokyo, Japan) as 
described [6, 11]. After obtaining r- EBUS images, the ultrasound 
probe was removed, and the Iriscope probe was advanced into 
the guide sheath to confirm lesion visualisation and sampling. 
The Iriscope procedure was systematically video- recorded for 
further analysis. Cytological brushing and biopsy were per-
formed through the guide sheath without repositioning to en-
sure sampling accuracy. Chest radiographs were not routinely 
performed post procedure. No rapid on- site examination was 
available (Video 1).

Lung cancer diagnosis was based on the cytological or histologi-
cal results of endoscopic sampling, CT- guided biopsy, or surgery. 
Benign lesions were confirmed by negative biopsy with regres-
sion on CT follow- up or microbiological findings responsive to 
treatment.

2.3   |   Human Interpretation

Iriscope videos were retrospectively analysed by two groups of 
endoscopists who did neither perform nor see the procedures, 
and were blind to the final diagnosis and the patient clinical 
history:

• Group 1: Two senior physicians, 2 physicians with > 10 years 
bronchoscopy experience;

• Group 2: Four junior physicians with < 2 years bronchos-
copy experience.

Based on endoscopic patterns established in our previous study 
[11], videos were classified as malignant (whitish friable tissue 

VIDEO 1    |    Procedure diagnosis for a peripheral lung nodule with r- 
EBUS + Iriscope. Video content can be viewed at https:// onlin elibr ary. 
wiley. com/ doi/ 10. 1111/ resp. 70057 
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and/or mucosal outgrowth and/or stenosis) or benign (inflam-
mation and/or secretions and/or normal bronchus appearance) 
(Figure 1).

2.4   |   Artificial Intelligence and Deep Learning

2.4.1   |   Image Processing

Iriscope video recordings were anonymized, split into 62,072 
frames (30 frames/s of 400 × 400 pixels), and grouped by patient 
(61 videos). The ResNet- 50 model [19], a convolutional neural 

network model, was pre- trained on the ImageNet dataset [20], 
and was used for binary classification (malignant versus benign) 
of individual frames extracted from the videos.

Patients were randomly allocated into training (41 patients) and 
test (20 patients) sets, maintaining a 70/30 ratio (training/test 
sets) of malignant cases. Frames of the video sequences from 
each patient were labelled as malignant or benign by an expert 
endoscopist, who classified them based on the endoscopic pat-
terns described above [11]. This human annotation, on top of 
the cancer/non- cancer allocation of the patient, was only used 
for the purpose of training the DL model.

FIGURE 1    |    CT, r- EBUS and Iriscope appearance of a 19 mm subpleural lung cancer and a 7 mm benign lesion. (A) Upper panel: CT scan image of 
a right lower lobe nodule; middle panel: Centred r- EBUS image of the nodule; Lower panel: Tumoral aspect with ‘fish flesh’ appearance on Iriscope 
(final diagnosis: Adenocarcinoma). (B) Upper panel: CT scan image of a right lower lobe nodule; middle panel: Tangential r- EBUS image of the nod-
ule; lower panel: Normal parenchyma aspect on Iriscope (final diagnosis: Infection).
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2.4.2   |   Deep Learning Model Training 
and Initialization

Data augmentation (resizing, cropping, rotation, flips, applica-
tion of shearing and Gaussian blur, etc.) were applied to improve 
model performance. This helped increase the variability of the 
dataset, thus improving the model's performance [21].

Since each of the datasets had an imbalance between total tu-
moral and non- tumoral frames, a balanced sampling technique 
was used during training. In order to improve the robustness 
of the results, five independent DL models were trained on the 
whole training set, differing only in their initialization pro-
cess [22].

2.4.3   |   Testing and Evaluation of the DL Model

The DL model was evaluated using the test set, composed of all 
the patient's frames that were not included in the training pro-
cess. This ensured that the model's performances were assessed 
on unseen data from unseen patients.

2.4.4   |   Different Windows Size for DL Per- Patient 
Interpretation

A sliding window approach (1 to 300 frames, with 1 frame cor-
responding to about 1/30th of a second) was used to generate 
per- patient predictions, with frame sequences indicating “tu-
moral” if all frames in the window indicated a tumour. Window 
sizes of 30, 45, and 60 frames (1–2 s) were tested, reflecting typ-
ical video review by physicians. The ARIMA method [23] was 
used to smooth frame- by- frame predictions, improving stability 
(Figure 2).

Appendix A1 provides details on the artificial intelligence and 
deep learning methods applied in the present study.

3   |   Statistical Analysis

Analysis was conducted using IBM SPSS Statistics version 
29.0.2.0 and Python 3.10 with the following libraries: scipy 1.14.1; 
scikit- learn 1.5.1; Pandas 2.2.2 and Numpy 2.1.0.

Results for non- normally distributed variables were presented 
as median and interquartile range (IQR). Categorical data were 
expressed as percentages, and comparisons of qualitative data 
were performed using Fisher's exact test. Diagnostic Accuracy, 
balanced accuracy, sensitivity, specificity, and precision were 
calculated based on standard definitions [24].

We chose to use Balanced Accuracy specifically because we 
were working with an imbalanced dataset, where one class (e.g., 
tumoral) was more represented than the other. Additionally, we 
calculated the F1 score, which represents the harmonic mean of 
precision and sensitivity. This metric is particularly useful for 
imbalanced data as it accounts for both false positives and false 
negatives. Agreement between Junior and Seniors' predictions 
was assessed using Cohen's Kappa test, according to standard 

definition. All tests were two- sided, with a p- value of 0.05 indi-
cating statistical significance.

4   |   Results

4.1   |   Patients and Lesions Characteristics

Sixty- four patients underwent the r- EBUS- Iriscope procedure 
for small PPNs during the study period. Three patients with-
out a final diagnosis by September 2024 were excluded from 
analysis.

Table 1 shows the main characteristics of the PPNs in our study 
cohort. The average nodule size was 15 mm (long axis, IQR: 
11–20 mm). The median distance from the pleura was 13 mm 
(IQR: 5–20 mm). On CT scans, nodules appeared solid in 48/61 
(78.7%) cases, pure ground glass in 12/61 (19.6%), and mixed in 
one case. A bronchus sign was present in 44/61 (72%) patients.

Endoscopic procedures were performed under local anaesthesia 
without sedation in 41/61 (67%) patients and 20/61 (33%) under 
general anaesthesia. r- EBUS visualisation was successful in 90% 
of cases (55/61), with 30 showing centred views (49%), 25 tangen-
tial views (41%), and 6 (10%) with no r- EBUS view. The length of 
the Iriscope adding procedure was about 1–3 min. No complica-
tions occurred.

A final diagnosis for lung cancer was obtained in 37/61 cases, 
33/37 (89%) through endoscopic sampling, while 4/37 (11%) 
cases were through surgery (3 patients) or CT- guided biopsy (1 
patient). The remaining 24 non- cancer cases were diagnosed as 
follows: 17 inflammatory/infectious nodules that disappeared 
on follow- up imaging within 3 to 6 months, and 7 benign lesions 
(3 aspergillomas, 1 tuberculoma, 1 hamartoma, and 2 cases of 
cryptogenic organised pneumonias (COP)).

4.2   |   Iriscope Imaging Interpretation

4.2.1   |   Human Interpretation

Seniors categorised 44/61 cases as malignant, correctly identi-
fying 37 lung cancers (Table 2). The 7 false positives included 3 
aspergillomas, 1 tuberculoma, 1 COP, and 2 inflammatory gran-
ulomas that regressed on follow- up imaging. True Positive Rate 
(TPR) (Sensitivity) for the diagnosis of cancer was 100%, with a 
Positive Predictive Value (Precision) of 84.1%. The True Negative 
Rate (TNR) (Specificity) was 70.8%, and Balanced Accuracy was 
85.4%. F- 1 Score was 91.4%. Seniors' interpretation was unaf-
fected by r- EBUS imaging type (circumferential, tangential or 
no image) (p = 0.7363).

Juniors performed worse, with a True Positive Rate (TPR) 
(Sensitivity) of 61.5% and a Positive Predictive Value (Precision) 
of 77.3% (95% CI, ± 1.8%). Their True Negative Rate (TNR) 
(Specificity) was 71.9%, Balanced Accuracy 66.7%, and F- 1 Score 
68.1% (Table 2).

In two patients, the Iriscope image was classified as malig-
nant by both Seniors and Juniors; these 2 patients had negative 
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endoscopic sampling for malignancy, but were finally diagnosed 
with lung cancer on surgery in one case and CT- guided biopsy 
in the other case.

Cohen's Kappa value for the agreement between Junior physi-
cians and Senior physicians in the interpretation of Iriscope im-
ages was 0.418, indicating moderate agreement.

4.2.2   |   AI- Deep Learning Model Results

The Training set included 41 patients (25 cancer cases), whereas 
the Test set included 20 patients (14 cancer cases).

Figure 2 shows frame- by- frame AI- generated cancer probabili-
ties from an Iriscope sequence of a malignant PPN.

Tables 3 and 4 present the performances of Deep learning ac-
cording to 3 different window size analyses, corresponding to 
30, 45, and 60 consecutive frames showing constant features, re-
spectively, alongside the performances of the Senior and Junior 
(95% CI) groups. As can be expected, larger window sizes tend to 
provide a better specificity but a lower sensitivity for the diagno-
sis of cancer. Supporting Information Appendix A1 provides the 
relationship between window size and specificity.

Using a 45 frames window size, True Positive Rate (TPR) 
(Sensitivity) of Deep Learning's Iriscope classification was 
68% (95% CI, ± 7.8%) for the diagnosis of cancer with a Positive 
Predictive Value (Precision) of 76.7% (95% CI, ± 2.4%). The True 
Negative Rate (TNR) (Specificity) was 75% (95% CI, ± 0.0%). 
Balanced Accuracy was 71.5% (95% CI, ± 7.2%). F1 Score was 
71.6% (95% CI, ± 9.6%).

FIGURE 2    |    Frame by frame deep learning prediction on a cancer patient. (A) Illustration of model's predicted probability for cancer (y- axis) 
against frame number position in the video sequence (x- axis). Areas in green indicate a correct prediction by the model (probability superior to 50%), 
whereas areas in red indicate a wrong prediction. (B) The same information, with smoothing on the probability using ARIMA. (C) Representative 
Iriscope images of the patient during the procedure.

 14401843, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/resp.70057, W

iley O
nline L

ibrary on [27/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 10 Respirology, 2025

Compared to human performances, the AI model outperformed 
Juniors, but did not surpass the Seniors.

Both humans and DL performed better in cancer prediction 
when the Gold Standard was based on the final diagnosis (20 

patients). This diagnosis was determined by considering not 
only the endoscopic sampling results but also additional sam-
pling procedures (e.g., surgery or CT- guided biopsy) in cases 
where endoscopic sampling was inconclusive (Tables 3 and 4).

5   |   Discussion

The present study shows that direct endoscopic visualisation 
of PPNs smaller than 2 cm is feasible using a miniaturised 
video endoscopy probe, and that endoscopic imaging of these 
peripheral lung lesions can predict malignancy with high ac-
curacy, both by human eyes and a deep learning- generated 
prediction model.

To our knowledge, before our recent short publication using 
Iriscope technology [11], in  vivo endoscopic imaging of small 
PPNs had only been reported at the microscopic level using con-
focal laser fluorescence endomicroscopy and in situ methylene 
blue imaging, which, at present, cannot be used in everyday 
practice [25, 26].

Recently, Kinoshita used a 0.97 mm fiberoptic probe, ex vivo 
in three cases, and visualised the peripheral tumour in one 
[27], but the technology has not yet been assessed in  vivo. 
Other technologies, such as ultrathin bronchoscopes or 
robotic- assisted bronchoscopy, that may allow direct vision 

TABLE 1    |    Nodules characteristics.

All, n 64

Patients with Final Diagnosis at the end of 
the study, n

61

Diagnosis obtained by r- EBUS sampling, n 57

Large diameter of the nodule (mm), 
mean + IQR

15 (11–20)

Small diameter of the nodule (mm), 
mean + IQR

11 (8–14)

Distance from pleura (mm), mean + IQR 13 (5–20)

Type of nodule n (%)

Solid 48 (78.7%)

Ground- Glass 12 (19.6%)

Mixed 1 (1.6%)

Bronchus sign on r- EBUS n (%) 44 (72%)

TABLE 2    |    Human interpretation compared to final diagnosis. Expressed in percentage.

Junior 1 Junior 2 Junior 3 Junior 4 95% CI* Senior

Accuracy 68.9% 60.7% 65.6% 67.2% 65.6% (± 3.5%) 88.5%

Balanced accuracy 68.5% 63.9% 65.8% 68.6% 66.7% (± 2.2%) 85.4%

Specificity 66.7% 79.2% 66.7% 75.0% 71.9% (± 6.1%) 70.8%

Precision 76.5% 78.3% 75.0% 79.3% 77.3% (± 1.8%) 84.1%

Sensitivity 70.3% 48.6% 64.9% 62.2% 61.5% (± 9.0%) 100.0%

F- 1 score 73.2% 60.0% 69.6% 69.7% 68.1% (± 5.6%) 91.4%

Kappa 0.516 0.261 0.464 0.455 0.418 n/a

*Confidence Interval.

TABLE 3    |    Human and deep learning interpretations for all 20 test patients.

W30a (%) W45b (%) W60c (%) Senior (%) Junior (%)

Accuracy 68.0% (± 3.9) 68.0% (± 2.4) 66.0% (± 3.7) 90% 60.0% (± 6.9)

Balanced accuracy 66.7% (± 4.0) 68.0% (± 2.1) 66.7% (± 4.5) 87.5% 63.5% (± 6.6)

Sensitivity 73.3% (± 3.3) 68.3% (± 6.1) 63.3% (± 4.0) 100.0% 45.8% (± 15.6)

Specificity 60.0% (± 3.3) 67.5% (± 6.0) 70.0% (± 9.8) 75.0% 81.2% (± 15.8)

Precision 73.3% (± 3.3) 76.1% (± 2.5) 76.6% (± 6.3) 85.7% 82.2% (± 14.0)

F1 Score 73.3% (± 3.3) 71.8% (± 3.2) 69.1% (± 2.9) 92.3% 56.6% (± 12.9)

Note: The 30, 45, and 60 frames window sizes correspond to fixed observation periods of 1, 1.5, and 2 s respectively. These window sizes align with the typical amount 
of video a physician would review to detect a tumour, allowing for a more accurate comparison between the DL models and human interpretation.
aWindow size of 30 frames.
bWindow size of 45 frames.
cWindow size of 60 frames.
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and sampling of lung nodules are currently limited to the 
middle third of the lung [28, 29] and therefore cannot yet be 
considered as true “peripheral bronchoscopy” imaging tech-
niques. Although the scopes may not advance to the outer 
third (although in many cases this is possible), the tools such 
as rEBUS, needles and cryoprobes can essentially reach the 
pleura and allow sampling of very peripheral lesions. However, 
these methods do not allow a direct vision of the nodule in the 
same way the Iriscope can.

Our study is therefore the first to assess the use of a miniatur-
ised probe for direct visualisation and prediction of cancer in 
a large series of patients with subpleural PPNs smaller than 
2 cm.

Using our previous descriptors of Iriscope imaging for periph-
eral cancer lesions, experienced bronchoscopists were able to 
differentiate malignant from non- malignant nodules with a 
positive predictive value and a balanced accuracy both reaching 
85%. This confirms the results of our published study in terms of 
the performances of the technique, as well as the validity of the 
endoscopic descriptors of cancer we previously defined for the 
peripheral bronchi [11].

In this study, due to the small number of GGos, we were not 
able to make a difference between GGos and solid nodules with 
Iriscope. This question requires future studies. Interestingly, 
the ability of experienced endoscopists to recognise cancer 
from Iriscope images was not affected by the position of the 
r- EBUS catheter relative to the centre of the lesion, as it did 
not differ when comparing centred or tangential r- EBUS im-
ages. The technique was also successful in six cases where no 
characteristic image could be seen on r- EBUS. While this can-
not be proven definitively by this series, it may indicate that 
the visualisation of the lesion using a miniaturised videoprobe 
improves the precision of the sampling in cases where r- EBUS 
provides tangential imaging or fails to localise the lesion, sit-
uations that are known to be associated with a lower rate of 
diagnostic biopsies [30, 31].

In line with these findings, r- EBUS + Iriscope allowed the vi-
sualisation and sampling of six lesions appearing as ground 
glass opacities and of 12 lesions without bronchus sign on 

CT, for which bronchoscopy sampling is usually challenging 
[32, 33].

On the other hand, junior bronchoscopists had more difficulties 
to recognise the endoscopic signature of cancer using Iriscope 
imaging. This could be explained by the fact that they are not 
yet fully trained to recognise subtle bronchial mucosal changes, 
especially within the non- cartilaginous small bronchioles or 
due to the lower definition of the Iriscope image (400 × 400 
pixels) compared to the standard video bronchoscopes. If the 
DL component did not outperform the experienced bronchos-
copist’ performance, the difference between junior and experi-
enced bronchoscopists emphasises the need for an AI- DL help 
to differentiate cancer and benign lesions when using Iriscope 
for trainees. The improvement of the AI- DL model may help 
spreading navigation bronchoscopy techniques, and especially 
Iriscope, even in low volume centres.

While the integration of AI has already shown some potential 
in identifying lung diseases using r- EBUS [34] images or Rapid 
On Site Cytology images  [35], only one published study tested 
AI on bronchoscopy images [36]. In this recent study, Vu VG et 
Al. trained AI to recognise lung cancer endoscopic images, re-
corded from 4 to 6 mm bronchoscopes in large proximal bronchi. 
The endoscopic images were extracted from 208 bronchoscopy 
videos of 106 lung cancer patients and 102 individuals who did 
not have lung cancer. Ten high- quality images per case were se-
lected by senior bronchoscopists with manual delineation of the 
visible tumours. The study was conducted with a training set of 
237 images and a test set of 263 images, using a convolutional 
neural network- based model. The mean accuracy for cancer 
classification was 0.85.

With a different method for image processing, applied to small 
PPNs, the DL method used in our series provided results similar 
to Vu's report in large bronchi, taking into account that, by defi-
nition, expert endoscopist in Vu's study classified tumoral images 
with 100% accuracy. By contrast, our study was performed on 
an unselected set of 62,000 images or frames, which represents 
the entirety of the Iriscope video recording for each patient. This 
frame- by- frame approach, which could be integrated in the fu-
ture into the Iriscope imaging technique in vivo, has the poten-
tial to provide additional information to the bronchoscopist in 

TABLE 4    |    Human and DL interpretations for 18 test patients, with diagnosis obtained by r- EBUS sampling.

W30a (%) W45b (%) W60c (%) Senior (%) Junior (%)

Accuracy 73.3% (± 4.1) 71.1% (± 8.0) 67.8% (± 6.4) 88.9% 65.3% (± 9.3)

Balanced accuracy 72.0% (± 3.8) 71.5% (± 7.2) 68.5% (± 5.7) 87.5% 66.9% (± 8.6)

Sensitivity 84.0% (± 7.8) 68.0% (± 1.4) 62.0% (± 11.4) 100.0% 52.5% (± 20.2)

Specificity 60.0% (± 4.9) 75.0% (± 0.0) 75.0% (± 0.0) 75.0% 81.3% (± 15.8)

Precision 72.4% (± 2.4) 76.7% (± 3.7) 75.1% (± 3.3) 83.3% 81.0% (± 15.3)

F1 Score 77.6% (± 4.3) 71.6% (± 9.6) 67.6% (± 8.2) 90.9% 61.0% (± 15.0)

Note: The 30, 45, and 60 frames window sizes correspond to fixed observation periods of 1, 1.5, and 2 s respectively. These window sizes align with the typical amount 
of video a physician would review to detect a tumour, allowing for a more accurate comparison between the DL models and human interpretation.
aWindow size of 30 frames.
bWindow size of 45 frames.
cWindow size of 60 frames.
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real time for more accurate cancer prediction and precise bron-
chial sampling.

While the DL model presented here is not yet at the level of the 
senior endoscopists' interpretation, it outperformed the junior 
physicians across several relevant metrics.

Interestingly, both human bronchoscopists, regardless of expe-
rience level, and the Deep learning machine model performed 
better in the prediction of cancer when the final diagnosis was 
considered, that is, including cancer patients with a negative 
endoscopic biopsy. This can be explained by the difficulties in 
obtaining adequate tissue sampling from a small peripheral 
nodule during the peripheral bronchoscopy [37]. This suggests 
that in vivo endoscopic detection of a tumoral aspect with neg-
ative sampling could improve decision- making for patients 
with PPNs, particularly when deciding whether a rapid inva-
sive diagnostic approach is warranted. Conversely, a benign 
appearance may help to avoid unnecessary resections of be-
nign lesions [38, 39]. Future studies might evaluate if a com-
posite endpoint, associating the Iriscope and the CT patterns, 
would be a better predictor than CT alone for progression of 
high- risk lesions.

Our study has some limitations. The sample size was relatively 
small, and the study was conducted at a single centre, limiting 
the generalisability of the findings. Presumably, even though a 
bronchus sign was not present in all cases, this technique still 
requires an airway, even if it is tiny and not seen on CT, leading 
to the lesion; otherwise, the Iriscope will have no way to get to 
the lesion, as the Iriscope may not be able to traverse the pulmo-
nary parenchyma.

Additionally, the reliance on subjective interpretation of Iriscope 
images, despite the use of standardised categories, likely intro-
duced variability. Furthermore, the training set for the AI model 
was also limited in size, which may have constrained its perfor-
mance. Future studies could include training the AI with larger 
datasets, as well as incorporating more advanced techniques 
such as recurrent neural networks to account for the temporal 
dimension of video sequences.

In conclusion, Iriscope could be a valuable tool in PPNs manage-
ment, especially for experienced operators. Applied to Iriscope 
images, AI could enhance overall performance of less experi-
enced physicians in diagnosing malignancy.
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